
2020 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

MODELING SIMULATION & SOFTWARE TECHNICAL SESSION
AUGUST 11-13, 2020 - NOVI, MICHIGAN

EXPLORING THE REQUIREMENTS AND CAPABILITIES OF OFF-ROAD

SIMULATION IN MAVS AND GAZEBO

1Marc N. Moore, 1Payton A. Ray, 1Christopher Goodin, 1Christopher R. Hudson,
1Matthew Doude, 1Daniel W. Carruth, 2Mark R. Ewing, Jr., 2Brent W. Towne

1Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS

2U.S. Army Corps of Engineers Engineer Research and Development Center, Vicksburg, MS

ABSTRACT
Simulation is critical to the development of effective unmanned ground

vehicles (UGVs). Simulation provides the ability to test virtual hardware and
software systems in conditions that may be difficult to recreate physically. An
important benefit of simulation is that it grants researchers access to simulated
hardware, such as sensors and vehicles, that might not be available otherwise. To
successfully simulate both hardware and software systems, it is essential to
acknowledge the needs and requirements of the simulation platform. In this paper,
we investigate two simulation environments being used at Mississippi State
University to model and simulate UGVs: the Mississippi State University
Autonomous Vehicle Simulator (MAVS) and Gazebo.

Within this paper we investigate the specific modeling needs for the
Clearpath Robotics Warthog UGV in both simulation environments. We found that
Gazebo has more options for vehicle and robot customization. However, Gazebo
requires more up-front and explicit information to simulate even basic vehicles.
MAVS, in contrast, is a platform that uses pre-defined vehicle and tire models that
reduce the informational requirements and better supports rapid prototyping of
four-wheeled ground vehicles. The narrower scope of MAVS limits its ability to
model complex robots, but it excels at vehicle-terrain interaction and sensor
simulation. It is fundamental to understand what level of granularity each system
offers regarding simulation creation (i.e., how customizable the vehicle, physics,
and environment is) to utilize each simulation environment effectively.

Citation: Moore, M.N., Ray, P.A., Hudson, C.R., Goodin, C., Doude, M., Carruth, D.W., Ewing, M.R., & Towne,
B.W. (2020). “Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo”, In
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI,
Aug. 13-15, 2020.

DISTRIBUTION STATEMENT A. Approved for
public release: distribution unlimited.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 2 of 13

1. INTRODUCTION
Simulation is an increasingly important step in the

process of creating, testing, and training advanced
robotic and vehicular systems. Simulation
platforms are currently being used to support the
development of autonomous unmanned ground
vehicles (UGVs), often intended for military
operations. Exploring the capabilities of UGVs in
simulation is beneficial in addressing specific
challenges that accompany these vehicles, as well
as how they navigate and interact with terrain.
Some of the challenging scenarios presented when
working with UGVs include navigation in
unconstrained off-road terrains, navigation in
environments with limited (or without) GPS
information, human error while operating, and high
cost of hardware. Simulation provides a
straightforward way to approach these tasks and
supports the production of robust, reliable systems.

The two simulation platforms that will be
discussed in this paper are the Mississippi State
University Autonomous Vehicle Simulator
(MAVS) [1] and Gazebo [2]. The goals of this
paper are to note the differences between these
simulation environments and to highlight their
individual strengths. To illustrate the differences in
creating and running simulations in both platforms,
we describe a model of the Clearpath Warthog and
document the necessary steps for both simulators.

One of the benefits of Gazebo is its long
development history. Gazebo has been used by
many researchers and offers a large library of
models, environments, and documentation.
Gazebo’s 3D model editing tool enables rapid
prototyping and real-time feedback. In contrast,
MAVS excels at accurate, physics-based sensor
simulations. MAVS is capable of rendering photo-
realistic outdoor scenes with authentic sensor
interaction. Both Gazebo and MAVS provide
integrations with the Robot Operating System
(ROS). ROS is a widely used framework for
developing software for autonomous robots and
ground vehicles. By integrating ROS, both MAVS
and Gazebo provide interfaces for integrating

popular perception, planning, and control
algorithms for testing.

2. VEHICLE MODELING &
SIMULATION

2.1 Advantages

Safe Testing Conditions. When developing any
vehicle, autonomous or not, passenger and
pedestrian safety is crucial. For self-driving or
autonomous cars, simulation provides a way to
thoroughly test things like reaction time in a safe,
simulated environment. Self-driving technologies
can be evaluated over time by simulating miles
driven, or by introducing rare edge cases. In this
case, simulating dangerous conditions before real-
world implementation is a necessity.

Access to Hardware. Often, research in robotics

or ground vehicle systems is limited (or prolonged)
by costs associated with hardware and design.
Monetary costs are not the only relevant concern –
the constraint of time is also a factor. When
physically constructing models from the ground up,
extra money and time can be spent re-engineering
prototypes. Introducing modeling and simulation
into the research development cycle manages these
issues. Virtual modeling allows design changes to
be quick and requires less human involvement.
Reverting to previous model instances becomes
much more convenient. Simulating a model in
action lets the creator instantly observe if
modifications function as expected.

Diverse Simulation Scenarios. Setting up testing

scenes for vehicles requires an on-site team of
humans responsible for building and monitoring the
scene, operating the vehicle(s), and running tests.
This occupies a significant amount of time which
could otherwise be used to create more diverse
scenarios in simulated environments. Simulation
offers control over scenario parameters that can be
difficult or impossible to recreate in real-world
testing (i.e., rainfall, dust, movement of vehicles,

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 3 of 13

etc.) When these tasks become relatively abstracted
via simulation, testing can be centered around
exploring new and interesting research ideas.

Automatic Generation of Labeled Data.

Researchers have used Gazebo to “synthesize
automatically labeled 3D point clouds of natural
environments” [3]. Specifically, the 3D laser
rangefinder on the ground mobile robot “Andabata”
[4] was emulated within Gazebo. The paper
addressed the relevance of scene classification,
which enables ground robots to autonomously
navigate natural environments. Throughout the
literature datasets containing 3D scans of terrain
elements (i.e., ground, vegetation) can be found –
most of which have already been manually or
interactively annotated in software. The authors
noted that few labeled datasets exist for ground
robots in natural environments. Using simulation,
the researchers generated realistic 3D point clouds
by assigning arbitrary reflectivity values to
environment elements.

Research has also been done to automate the
process of collecting and labelling training data for
convolutional neural networks (CNNs) using
MAVS [5]. It was found that the simulated data
generated could be useful for training CNNs to
segment image or camera data in outdoor
environments with limited error. Prior to running
simulations, all objects within a scene were
semantically labeled. In MAVS, they generated
random terrain surfaces, three different ecosystem
types, three different sensor types, and
automatically labeled the training and LiDAR data.
If humans were to manually label the data described
above, it could take countless hours.

Validation of Results. When simulated models

accurately represent real-world models, simulation
can provide an effective tool for research,
development, and testing of UGVs. Confidence in
the results of simulation depends on verification
and validation of the models that comprise the
simulation framework. This requires verifying that

the specifications meet the needs of the model or
system user and validating that the model or
system’s output matches what is intended. It is
important to recognize that the transition from
simulation to real-world (sim to real transfer) is
rarely one-to-one. There are limitations in sim to
real transfer in areas like Reinforcement Learning
[6] and in tasks like 3D human pose estimation [7].

3. MODELING PLATFORMS

3.1 Gazebo

Gazebo is a popular open-source 3D robotics
simulation platform. From 2004-2011, Gazebo was
a contributor to the Player Project [8], founded to
encourage research efforts in robotics and sensor
systems through the use of free software–
specifically simulation platforms. As a result,
client/server robot control interface Player, 2D
robot simulator Stage, and 3D robot simulator
Gazebo were all developed. By 2011, Gazebo had
transitioned into an independent project. Gazebo
was created for the purpose of rapidly testing
algorithms, designing complex robots, simulating,
training systems within realistic scenarios, and
more.

To accurately and flexibly render simulation
components and their physical features, Gazebo
uses two different XML file formats: Unified
Robotic Description Format (URDF) and
Simulation Description Format (SDF). Files
specifying a given robot or vehicle’s visual,
structural, and kinematic properties (i.e., links,
joints, sensors, etc.) are generally written in URDF.
While URDFs are useful and standardized in some
robotics applications (e.g., NVIDIA Isaac Sim [9],
MathWorks Simscape Multibody [10]), URDFs
only define a robot in isolation and cannot specify
the pose of that robot within a world. Originally
designed to address the shortcomings of URDFs
within Gazebo [11], SDF was introduced.
Typically, files written in SDF are used for
controlling and visualizing movement at the
robot/vehicle level, or describing elements like

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 4 of 13

terrain, agents, or static and dynamic objects at the
world level.

Four diverse, high-performance physics engines
are available through Gazebo’s physics API: Open
Dynamics Engine (ODE) [12], Bullet [13],
Simbody from Stanford University [14], and
Dynamic Animation and Robotics Toolkit (DART)
from Georgia Tech [15]. Twenty-five sensor
classes [16] are defined for Gazebo, including
common sensors for autonomous robotic and
vehicular systems like LiDAR and GPS. Gazebo is
capable of emulating realistic 3D scenes using
Object-Oriented Graphics Rendering Engine
(OGRE) [17]. User interaction with Gazebo can be
achieved through its native 3D graphic editor or by
modifying a file’s code directly.

ROS is commonly used as a direct
communication, planning, and control interface
with Gazebo. ROS is a widely used framework for
developing software and implementing real-time
control of simulated robots and vehicles.
Communication with ROS is best accomplished by
including additional simulation-specific tags within
URDF files as well as installing Gazebo plug-ins
and dependencies. This enables seamless control
via the ros_control [18] packages. The ros_control
set of packages includes controller interfaces,
controller managers, transmissions and interfaces
for hardware. Gazebo simulations are ultimately
launched through compatible roslaunch [19] files.

3.2 MAVS

MAVS is a collection of software tools and
libraries used for realistic on-road and off-road
vehicle simulations. MAVS has been in
development for three years and was started to
address the shortcomings of existing simulators to
interactively simulate autonomous navigation in
complex off-road terrain. MAVS leverages Intel’s
Embree platform [20]: a collection of ray tracing
kernels optimized for CPUs. Embree allows MAVS
to support in-depth physics models for LiDAR and
camera systems to produce accurate physics-based
sensor data.

In [1], the authors showcased the detail given to
simulated sensors by accurately modeling the
behavior of LiDAR using ray tracing and validating
their results against controlled field tests, analytical
models, and laboratory results. This work
demonstrated MAVS’ ability to simulate LiDAR in
complex environments in real-time.

MAVS additionally provides resources for
automatic terrain generation for off-road
autonomy, enabling rapid testing in a large set of
unique environments. Since real-world
autonomous systems must contend with adverse
weather conditions, MAVS provides realistic
simulated weather environments. Environment
details such as fog, snow, clouds, wind, and time of
day are all adjustable through its user interface. It
uses ReactPhysics3D to model vehicle physics;
however, it is compatible with other vehicle
dynamics models including Chrono [21].

Another notable feature of MAVS is its robust
vehicle-terrain interaction (VTI) model. MAVS
represents vehicles using a multibody dynamics
model which allows multiple independent forces to
be calculated for each component of the vehicle.
This enables realistic simulations of vehicle
behavior on different surfaces. Currently, MAVS
has implemented equations to model tire
interactions on six different surfaces: wet and dry
pavement, fine- and coarse-grained soil, snow, and
ice.

MAVS is written in C++ and has an optional
Python wrapper for ease of use. Geometric and
physical descriptions for vehicles and terrain are
specified in JSON files. The input JSON file
contains features such as wheel offsets and chassis
dimension that are used by the RP3D engine. The
MAVS coordinate system follows an East-North-
Up scheme. The positive x direction is east, the
positive y direction is north, the positive z direction
points upward, and the default length unit is in
meters. Currently, the software is available at no
cost to non-commercial users.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 5 of 13

3.3 Simulation Use Cases
A. Gazebo

Gazebo has been used as a simulation tool for a
variety of scientific robotic applications. Okayama
University of Science researchers [22] show that
autonomous navigation algorithms performed
similarly in both real-world and simulated
environments. The experiment was conducted
using two mobile robots: Pioneer 3-DX [23], a
small two-wheel two-motor differential robot, and
PeopleBot [24], a differential robot designed for
service/human-interface tasks. Their results
demonstrate that simulation-based code developed
using ROS and Gazebo can be deployed to real-
world scenarios without modification.

Researchers from Innopolis University and Kazan
Federal University [25] modeled the Russian
crawler-type UGV “Engineer” using ROS and
Gazebo. Their research described the complexity of
modeling, animating, and simulating UGVs and
approximating track-terrain interaction. Despite the
challenges, the model succeeded at mirroring the
movement and physics of the real Engineer robot.
It also supported both crawler or “caterpillar”
locomotion and upper manipulator control.

In an effective display of Gazebo’s range of
simulation environments, a plug-in was created to
model unmanned underwater vehicles and
structures [26]. Submersible turbines and sensors
were modeled that react to the environment using
hydrodynamic and hydrostatic force simulations.
Gazebo’s ability to model vehicles with multiple
degrees of freedom has been extended to simulate
UAVs as well [27].

B. MAVS

MAVS is a relatively new option for high-
performance ground vehicle simulation. In one of
the earliest papers about the platform [1], the
authors addressed the problem of realistically
simulating LiDAR and its interaction with
vegetation. The use of LiDAR in on-road
autonomous vehicles is well established, but unique
challenges present themselves when applying these

techniques to unstructured, natural environments.
One issue that remains unaddressed due to the lack
of adequate simulations is the failure of LiDAR to
accurately distinguish between obstacles like trees
or concrete, and objects that can be easily traversed
like grass or low vegetation. In this work the
authors presented a statistical method for modeling
LiDAR returns from grass; a common scenario in
real-world, off-road autonomous vehicle
development that was underserved in current
simulation platforms. The authors point to the three
requirements for accurate, physics-based LiDAR
simulation: Beam divergence and beam shape,
modeling the light-scattering properties of
vegetation, and on-board signal processing.

4. VEHICLE IMPLEMENTATION

4.1 Vehicle Data
A. Gazebo

The foundation for every Gazebo simulation is the
world file. As mentioned in previous sections, files
which describe elements at the world-level are
written in SDF. World files are indicated with a
.world extension and contain all elements involved
in a simulation. These elements are items such as
robots, sensors, objects, agents, etc. as well as
global parameters like the sky, ambient light, and
physics properties. Some world elements are
marked as static, meaning they only possess
collision geometry (or geometry relative to the
interaction of one object with another). Static
encompasses all objects which are not meant to
move within the simulated world environment.
Properly labeling these entities as so ensures that
non-moving objects do not have unnecessary
performance defects on the simulation.
Correspondingly, there are world elements marked
as dynamic. This is specified by either setting the
<static> element to false in an SDF file or omitting
the element entirely. Dynamic objects possess
inertia in additional to collision geometry,
distinguishing them from static objects.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 6 of 13

Model files are another key component required
to successfully run Gazebo simulations. Like world
files, they are written in the SDF XML file format.
The purpose of model files is to both simplify world
files and ease model reuse in general. Gazebo
model files can be provided from the online model
database [28], shipped as example models with
Gazebo (in previous versions), shared amongst the
online community of users, or created using
Gazebo’s model editor or other 3D modeling
software (i.e., Blender [29]).

To better understand how models are constructed
in Gazebo, Table 1 provides an overview of the
components of an SDF Model Object, which refers
to the <model> tag in an SDF file. Each model has
a collection of Links, Joints, Visuals, Collision
objects, Inertial and Sensor properties, and Plugins
for controlling the model itself [30].

Table 1: Components of SDF Models.
Variable Description
Links Physical link for one

body in model (i.e.,
wheel) with collision,
visual, and inertial
properties

Collision Collision properties of
a link;
Contains the geometry
for collision checking,
usually a simple shape
or triangle mesh

Visual 0 or more visual
properties of a link;
Specifies the shape
(i.e., cylinder) of an
object

Inertial Inertial/dynamic
properties of a link
(i.e., mass)

Sensor 0 or more sensors that
collect data from
world for plug-in use

Light 0 or more light sources
attached to a link

Joints Connects two links
that have kinematic
and dynamic
properties

Plugins

Third-party libraries
which control models

The ordering of variables listed above in Table 1

is the suggested order in which features should be
added to an SDF model file – from least to most
complex.

B. MAVS

Every MAVS simulation is defined by the core
MAVS class. This class has methods and member
variables for setting every simulation parameter
such as the vehicle, physics engine, sensors, etc.
The context of simulation environments is defined
in the Environment member of the MAVS class.
Features like light and weather are managed by the
Environment. Environmental features like Rain,
turbidity, albedo, fog density, cloud-cover fraction,
snowfall rate, and wind speed can be set by calling
the member functions of the environment class.

A scene is a component of the MAVS
environment and must be created and added to the
environment. Whereas Gazebo combines physical
properties and the ambient properties in the world
file, MAVS separates these into two classes, the
scene and environment. The scene is defined as a
series of meshes which describe the polygonal
objects within the scene as well as the terrain and
terrain features. Random scenes can be created
automatically, or a scene can be generated using a
description file. Scene variables can be described
via the text file and can also be modified using
Python commands. Features such as potholes and
terrain roughness can also be defined for the scene.

To implement a vehicle model using RP3D,
MAVS requires the vehicle specifications be
defined using via a JSON file. The JSON must
contain five components that are defined using

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 7 of 13

forty-five variables. The first structure, Chassis, is
defined via the Sprung Mass, the Center of Gravity
Offset, and the Dimensions per Table 2.

Table 2: Chassis Parameters.

Variable Description
Center of Gravity
Offset

The offset in meters
from the lower plane
of the chassis

Dimensions The length, width, and
height of the chassis in
meters

Sprung Mass The portion of the
vehicle mass
supported by the
suspension

The suspension, or Axles, are defined by nine

variables for each axle.

Table 3: Suspension Parameters.
Variable Description
Longitudinal Offset Offset from center of

gravity, positive and
negative for front and
rear axle, respectively

Track Width Distance between
center of each tire

Spring Constant Required for the linear
spring-damper model
used by the suspension

Damping Constant
Spring Length
Steered/Powered Boolean
Unsprung Mass The portion of the

vehicle mass not
supported by the
suspension

Max Steer Angle The angle in both
directions a tire can
turn

The tire specifications are a subset of the Axles

structure and require five variables. Both tires on
the axle are given the same values, Spring

Constant, Damping Constant, Radius, Width, and
High Slip Crossover Angle.

Table 4: Tire Parameters.
Variable Description
Spring Constant Tires are also modeled

as an independent
spring-damper system,
requiring these
constants

Damping Constant

Radius Tire radius in meters
High Slip Crossover
Angle

Used by the Crolla
Model [31] to calculate
net lateral traction

Width Tire width in meters

The final list of values, Initial Pose, contains two

variables, Position and Orientation. Position is a
three-element list containing the desired origin in
Cartesian coordinates of the simulated vehicle.
Orientation is a four-element quaternion describing
the rotation of the vehicle in 3D space.

5. VEHICLE-TERRAIN INTERACTION

As mentioned previously, a motivation for the
development of MAVS was the lack of simulators
that could adequately simulate both sensors and
terrain for off-road autonomous vehicles. To
address limitations in representations of terrain, a
robust vehicle-terrain interaction model was
developed within MAVS. However, we are
unaware of any publications that describe a similar
model for Gazebo. Although there are multiple
options for physics engines, ODE, the default
physics engine for Gazebo, does not seem to pay
special attention to modeling tire and surface
interactions. The friction and contact model used by
ODE is based on an efficient implementation of the
Dantzig LCP solver [32] but it is unclear how that
is used to implement VTI.

To better simulate vehicle-terrain interaction,
particularly off-road terrain, MAVS implements
multiple equations that accurately model tires and a
variety of surfaces. The MAVS VTI model is

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 8 of 13

iterative and calculates all the relevant forces in six
phases for each discrete timestep. The multibody
dynamics (MBD) model introduced in the previous
sections describes vehicle behavior such as
orientation, position, and velocity for each time
step. These variables are used by the VTI model to
calculate the torque and forces to be applied to the
vehicle through the hub of the wheel which is
connected to the chassis by a slider joint and spring-
damper system.

5.1 Wheel Velocities

The first step in the VTI calculation is calculating
the wheel velocities based on the global tire frame.
The MBD model describes tire velocity using the
global world coordinates and an orientation matrix.
Using the tire velocity from the global coordinates,
(�⃗�𝑣𝑡𝑡), and the Look-To vector, 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡), the
longitudinal velocity at timestep t, 𝑣𝑣‖(𝑡𝑡), is
calculated with

𝑣𝑣‖(𝑡𝑡) = 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡) ∙ �⃗�𝑣𝑡𝑡(𝑡𝑡)

Where the longitudinal velocity is a portion of the

total tire velocity that is directed forward. Likewise,
the lateral velocity is found using the Look-side
vector. This is the velocity perpendicular to the
wheel hub if the tires were straight, calculating the
side-to-side velocity at time t with

𝑣𝑣⊥(𝑡𝑡) = 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡) ∙ �⃗�𝑣𝑡𝑡(𝑡𝑡)

And finally, the vertical velocity of the tires is

found using the Look-Up vector with

𝑣𝑣↑(𝑡𝑡) = 𝐿𝐿𝐿𝐿�����⃗ (𝑡𝑡) ∙ �⃗�𝑣𝑡𝑡(𝑡𝑡)

The tire velocity based on the tire frame can
therefore be defined as the sum of these products,
producing the new reference frame to calculate VTI
with

�⃗�𝑣𝑡𝑡(𝑡𝑡) = 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡)𝑣𝑣‖(𝑡𝑡) + 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡)𝑣𝑣⊥(𝑡𝑡) + 𝐿𝐿𝐿𝐿�����⃗ (𝑡𝑡) 𝑣𝑣↑(𝑡𝑡)

5.2 Normal Forces

The second step in calculating the VTI model is
to derive the normal forces and tire deflection. This
will be used in the longitudinal and lateral force
calculation. Using the coordinate of the tire at the
current time step, 𝑝𝑝𝑡𝑡 = [𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧], the terrain height
at the same point, 𝑍𝑍(𝑥𝑥,𝑦𝑦), and the tire diameter, d,
the tire deflection, 𝛿𝛿(𝑡𝑡), is calculated as

𝛿𝛿(𝑡𝑡) = 𝑍𝑍�𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦� +
𝑑𝑑
2
− 𝑝𝑝𝑧𝑧

Using the tire spring coefficient, k¸ the damping

coefficient, c, and the vertical tire velocity from the
previous step, the normal force 𝑁𝑁(𝑡𝑡), is calculated
with

𝑁𝑁(𝐿𝐿) = 𝑘𝑘𝛿𝛿(𝑡𝑡) − 𝑐𝑐 𝑣𝑣↑(𝑡𝑡)

5.3 Slip and Slip Angle

To calculate the effective radius, tire deflection
must be taking into consideration. By subtracting
tire deflection from the undeflected radius, the
effective radius is given by

𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑑𝑑
2
− 𝛿𝛿(𝑡𝑡)

To calculate the tire slip, 𝑠𝑠(𝑡𝑡), using the

longitudinal and angular velocity the following
piece-wise equation is implemented:

𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧
𝑟𝑟𝑟𝑟𝑡𝑡

𝑣𝑣‖
− 1 𝑣𝑣‖ < 𝑟𝑟𝑟𝑟𝑡𝑡 𝑎𝑎𝑎𝑎𝑑𝑑 𝑣𝑣‖ ≠ 0

1 −
𝑣𝑣‖
𝑟𝑟𝑟𝑟𝑡𝑡

 𝑣𝑣‖ > 𝑟𝑟𝑟𝑟𝑡𝑡 𝑎𝑎𝑎𝑎𝑑𝑑 𝑟𝑟𝑟𝑟𝑡𝑡 ≠ 0

0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒

To calculate the slip angle at time step t, 𝛼𝛼(𝑡𝑡),

the steering angle, 𝜃𝜃(𝑡𝑡), is used in the following
equation.

𝛼𝛼 = tan−1
𝑣𝑣⊥(𝑡𝑡)
�𝑣𝑣‖(𝑡𝑡)�

− 𝜃𝜃(𝑡𝑡)

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 9 of 13

The first step in the VTI calculation is calculating

the individual wheel velocities based on the global
tire frame. The MBD model describes tire velocity
using the global world coordinates and an
orientation matrix. To calculate the forces acting on
the tires, these need to be converted to velocities
relative to the tire frame rather than the global
frame. Using the tire velocity from the global
coordinates, (�⃗�𝑣𝑡𝑡), and the Look-To vector, 𝐿𝐿𝐿𝐿����⃗ (𝑡𝑡),
the longitudinal velocity at timestep t, 𝑣𝑣‖(𝑡𝑡), is
calculated with

5.4 VTI Forces

Using the previous steps, the force exerted on the
tire by the terrain is modeled with the following
VTI equation. The inputs include the normal force,
the tire slip, tire slip angle, and tire deflection.

𝐹𝐹𝑣𝑣𝑡𝑡𝑣𝑣 = �𝐹𝐹‖𝑣𝑣𝑡𝑡𝑣𝑣 ,𝐹𝐹⊥𝑣𝑣𝑡𝑡𝑣𝑣� = 𝑓𝑓(𝑁𝑁, 𝛿𝛿, 𝑠𝑠,𝛼𝛼)

5.5 Wheel Angular Velocity
The wheel dynamics and the VTI are treated

independently in MAVS. After the VTI forces are
updated, the wheel angular velocity is calculated at
each time step according to the equation

𝑟𝑟𝑡𝑡(𝑡𝑡 + 𝛿𝛿𝑡𝑡) = 𝑟𝑟𝑡𝑡(𝑡𝑡) +
𝑑𝑑𝑡𝑡
𝐼𝐼𝑡𝑡

(𝑄𝑄(𝑡𝑡) −
𝑑𝑑
2
𝐹𝐹‖ − 𝛽𝛽𝑟𝑟𝑡𝑡(𝑡𝑡)

Where 𝛽𝛽 is the viscous friction coefficient of the

tire, 𝑄𝑄(𝑡𝑡) is the applied torque from the driveline,
𝐼𝐼𝑡𝑡 is the moment of inertia of the tire, and 𝐹𝐹‖ is the
longitudinal net traction calculated from the VTI.
The angular velocity calculated at this time step
will be used in the following time step to calculate
the wheel slip.

5.6 Global Frame Forces

The 3D force applied to the wheel hub, in global
coordinates, is given by

𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐹𝐹‖𝑣𝑣𝑡𝑡𝑣𝑣𝐿𝐿𝐿𝐿����⃗ + 𝐹𝐹⊥𝑣𝑣𝑡𝑡𝑣𝑣𝐿𝐿𝐿𝐿����⃗ + 𝑁𝑁𝐿𝐿𝐿𝐿�����⃗

This force is applied when the tire and VTI model
completes. The vehicle and driveline models then
perform their update steps and re-initiate the tire
model with the updated tire position, velocity,
angular velocity, and applies torque.

6. WARTHOG IMPLEMENTATION

The vehicle selected for this implementation, the
Clearpath Robotics Warthog [33], is described as
“ROS Ready” by the manufacturer and has
simulation and modeling files provided and
maintained on GitHub [34]. Figure 1 shows a
Warthog in the field. The files provided include a
URDF file that describes the behavior of the model
as well as the physical specifications like size and
weight. Additionally, an object file is provided that
specifies the dimensions used by the visual
representation. As this was provided by the
manufacturer, the details are assumed to be
accurate and reliable.

These simulation files are intended to be used
with the ROS and Gazebo platforms and did not
include certain details required by MAVS. MAVS
is designed with common ground vehicles as its
focus and thus lacks the ability to simulate some
mechanisms more often used in robotics. The rigid
multibody dynamic model used by MAVS prevents
it from simulating the geometric passive
articulation that allows the left and right halves of

Figure 1: Clearpath promotional image of
Warthog with sensor attachments.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 10 of 13

the Warthog to pivot independently. Since the
Warthog does not have a suspension like an on-
road, production vehicle, certain assumptions were
made to model it in MAVS.

The weight of the Warthog provided in the
datasheet was used for the Sprung Mass in the
vehicle description JSON for MAVS. Normally,
this would only be the weight of the vehicle
components supported by the suspension and
would not include the weight of the wheels or the
entire weight of the suspension itself. The
maximum engine torque was also absent from
modeling files and was estimated using information
provided in datasheets.

To get details about the axle and tire placement,
the object file was opened in a 3D viewer provided
by MAVS. By viewing the model provided by
Clearpath in the viewer, the tire width, radius, axle
offsets, and center of gravity were measured.
Additionally, the visual model of the Warthog was
offset from the physical model and needed to be
centered. Once the model corrections were made
the vehicle was simulated within MAVS. Figure 2
shows the completed vehicle in a forest
environment.

 For Gazebo, the process was much simpler and
straightforward. Using a fresh installation of

Ubuntu 16.04, the process of downloading,
installing, and running the Warthog simulation took
only a few minutes. No modification to the setup or
simulation files were needed. Figure 3 below shows
the Warthog model launched in Gazebo inside of an
example urban environment created by Clearpath
[34].

7. CONCLUSIONS
In this paper, we explored both the differences and

capabilities of two 3D simulation environments,
MAVS and Gazebo, by describing the minimum
informational requirements needed for simulation
and vehicle setup. To further illustrate this, we
implemented Clearpath Robotics’ Warthog UGV in
each platform and made necessary adaptations to
the model to faithfully match the virtual vehicle to
the physical vehicle. Research use cases for MAVS
and Gazebo were discussed to highlight the
potential for robot and ground vehicle creation,
testing, and simulation customization relative to
each environment. Additionally, the fidelity of both
physics models were discussed—paying close
attention to the vehicle-terrain interactions. This
knowledge was shared to facilitate and encourage
the use of modeling and simulation of UGVs in
MAVS and Gazebo.

Figure 2: MAVS Warthog model in
example off-road forest environment.

Figure 3: Gazebo Warthog model in example
urban environment.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 11 of 13

Future work will be done to test and validate the
accuracy of our simulated results by comparing

them to real-world implementations using the
Warthog vehicle.

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 12 of 13

8. REFERENCES
[1]C. Goodin, M. Doude, C. Hudson and D.

Carruth, "Enabling Off-Road Autonomous
Navigation-Simulation of LIDAR in Dense
Vegetation", Electronics, vol. 7, no. 9, p. 154,
2018. Available: 10.3390/electronics7090154
[Accessed 18 May 2020].

[2]Open Source Robotics Foundation. (2020)
Gazebo [Online]. Available:
http://gazebosim.org/.

[3]M. Sanchez, J. Martinez, J. Morales, A. Robles
and M. Moran, "Automatic Generation of
Labeled 3D Point Clouds of Natural
Environments with Gazebo", 2019 IEEE
International Conference on Mechatronics
(ICM), 2019. Available:
10.1109/icmech.2019.8722866 [Accessed 18
May 2020].

[4]J. L. Martínez, M. Morán, J. Morales, A. J. Reina
and M. Zafra, "Field navigation using fuzzy
elevation maps built with local 3D laser scans",
Applied Sciences, vol. 8, no. 397, pp. 1-18, 201.

[5]C. Goodin, S. Sharma, M. Doude, D. Carruth, L.
Dabbiru and C. Hudson, "Training of Neural
Networks with Automated Labeling of
Simulated Sensor Data", SAE Technical Paper
Series, 2019. Available: 10.4271/2019-01-0120
[Accessed 18 May 2020].

[6]Kaspar, Manuel & Muñoz Osorio, Juan & Bock,
Juergen. (2020). Sim2Real Transfer for
Reinforcement Learning without Dynamics
Randomization.

[7]Doersch, C., & Zisserman, A. (2019). Sim2real
transfer learning for 3D pose estimation: motion
to the rescue. ArXiv, abs/1907.02499.

[8] Player/Stage project. (2020) The Player Project
[Online]. Available:
http://playerstage.sourceforge.net/.

[9]NVIDIA Corporation (2020). NVIDIA Isaac
Sim [Online]. Available:
https://developer.nvidia.com/isaac-sim.

[10]The MathWorks, Inc. (2020). Simscape
Multibody [Online]. Available:

https://www.mathworks.com/products/simmech
anics.html.

[11]Open Source Robotics Foundation. (2020)
Tutorial: Using a URDF in Gazebo [Online].
Available:
http://gazebosim.org/tutorials/?tut=ros_urdf.

[12]Russell L. Smith. (2020) Open Dynamics
Engine [Online]. Available:
http://ode.org/wiki/index.php?title=Main_Page.

[13]Real-Time Physics Simulation. (2020)
BULLET Physics Library [Online]. Available:
https://pybullet.org/wordpress/.

[14](2020) Simbody: Multibody Physics APL
[Online]. Available:
http://simtk.org/projects/simbody/.

[15]J. Lee et al., "DART: Dynamic Animation and
Robotics Toolkit", The Journal of Open Source
Software, vol. 3, no. 22, p. 500, 2018. Available:
10.21105/joss.00500 [Accessed 18 May 2020].

[16]Gazebo API. (2020) Sensors [Online].
Available: https://osrf-
distributions.s3.amazonaws.com/gazebo/api/de
v/group__gazebo__sensors.html.

[17]OGRE3D. (2020) Object-Oriented Graphics
Rendering Engine [Online]. Available:
https://www.ogre3d.org/.

[18]ROS.org. (2020) ros_control Package
Summary [Online]. Available:
http://wiki.ros.org/ros_control.

[19]ROS.org. (2020) roslaunch Package Summary
[Online]. Available:
http://wiki.ros.org/roslaunch.

[20]Intel Corporation. (2009-2020) Intel Embree –
High Performance Ray Tracing Kernels
[Online]. Available: https://www.embree.org/.

[21]Tasora, A., Serban, R., Mazhar, H., Pazouki,
A., Melanz, D., Fleischmann, J., ... & Negrut, D.
(2015, May). Chrono: An open source multi-
physics dynamics engine. In International
Conference on High Performance Computing in
Science and Engineering (pp. 19-49). Springer,
Cham.

[22]K. Takaya, T. Asai, V. Kroumov and F.
Smarandache, "Simulation environment for

http://gazebosim.org/
http://playerstage.sourceforge.net/
https://developer.nvidia.com/isaac-sim
https://www.mathworks.com/products/simmechanics.html
https://www.mathworks.com/products/simmechanics.html
http://gazebosim.org/tutorials/?tut=ros_urdf
http://ode.org/wiki/index.php?title=Main_Page
https://pybullet.org/wordpress/
http://simtk.org/projects/simbody/
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/group__gazebo__sensors.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/group__gazebo__sensors.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/group__gazebo__sensors.html
https://www.ogre3d.org/
http://wiki.ros.org/ros_control
http://wiki.ros.org/roslaunch
https://www.embree.org/

Proceedings of the 2020 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Exploring the Requirements and Capabilities of Off-Road Simulation in MAVS and Gazebo, Moore, et al.

Page 13 of 13

mobile robots testing using ROS and Gazebo,"
2016 20th International Conference on System
Theory, Control and Computing (ICSTCC),
Sinaia, 2016, pp. 96-101.

[23]Adept Technology, Inc. (2011) Pioneer 3-DX
[Online]. Available:
https://www.generationrobots.com/media/Pione
er3DX-P3DX-RevA.pdf.

[24]Adept Technology, Inc. (2011) PeopleBot
[Online]. Available:
http://www.generationrobots.com/media/People
Bot-PPLB-RevA.pdf

[25]M. Sokolov, R. Lavrenov, A. Gabdullin, I.
Afanasyev and E. Magid, "3D modelling and
simulation of a crawler robot in ROS/Gazebo",
Proceedings of the 4th International Conference
on Control, Mechatronics and Automation -
ICCMA '16, 2016. Available:
10.1145/3029610.3029641 [Accessed 18 May
2020].

[26]M. Manhaes, S. Scherer, M. Voss, L. Douat
and T. Rauschenbach, "UUV Simulator: A
Gazebo-based package for underwater
intervention and multi-robot
simulation", OCEANS 2016 MTS/IEEE
Monterey, 2016. Available:
10.1109/oceans.2016.7761080 [Accessed 4 June
2020].

[27]M. Zhang et al., "A high fidelity simulator for
a quadrotor UAV using ROS and Gazebo",
IECON 2015 - 41st Annual Conference of the
IEEE Industrial Electronics Society, 2015.
Available: 10.1109/iecon.2015.7392534
[Accessed 5 June 2020].

[28]Github, Inc. (2020) gazebo_models Model
Database [Online]. Available:
https://github.com/osrf/gazebo_models.

[29]The Blender Foundation. (2020) Blender
[Online]. Available: https://www.blender.org/.

[30]Open Source Robotics Foundation. (2014)
Gazebo Components [Online]. Available:
http://gazebosim.org/tutorials?tut=components
&cat=get_started.

[31]M. Parker, S. Shoop, B. Coutermarsh, K.
Wesson and J. Stanley, "Verification and
validation of a winter driving simulator",
Journal of Terramechanics, vol. 46, no. 4, pp.
127-139, 2009. Available:
10.1016/j.jterra.2009.05.002 [Accessed 18 May
2020].

[32]D. Baraff, "Fast contact force computation for
nonpenetrating rigid bodies", Proceedings of the
21st annual conference on Computer graphics
and interactive techniques - SIGGRAPH '94,
1994. Available: 10.1145/192161.192168
[Accessed 3 June 2020].

[33]Clearpath Robotics, Inc. (2020) Warthog
[Online]. Available:
https://clearpathrobotics.com/warthog-
unmanned-ground-vehicle-robot/.

[34]Github, Inc. (2020) Common packages for
Warthog [Online]. Available:
https://github.com/warthog-cpr/warthog.

https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf
https://www.generationrobots.com/media/Pioneer3DX-P3DX-RevA.pdf
http://www.generationrobots.com/media/PeopleBot-PPLB-RevA.pdf
http://www.generationrobots.com/media/PeopleBot-PPLB-RevA.pdf
https://github.com/osrf/gazebo_models
https://www.blender.org/
http://gazebosim.org/tutorials?tut=components&cat=get_started
http://gazebosim.org/tutorials?tut=components&cat=get_started
https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
https://github.com/warthog-cpr/warthog

	1. INTRODUCTION
	2. VEHICLE MODELING & SIMULATION
	2.1 Advantages

	3. MODELING PLATFORMS
	3.1 Gazebo
	3.2 MAVS
	3.3 Simulation Use Cases

	4. VEHICLE IMPLEMENTATION
	4.1 Vehicle Data

	5. VEHICLE-TERRAIN INTERACTION
	5.1 Wheel Velocities
	5.2 Normal Forces
	5.3 Slip and Slip Angle
	5.4 VTI Forces
	5.5 Wheel Angular Velocity
	5.6 Global Frame Forces

	6. WARTHOG IMPLEMENTATION
	7. CONCLUSIONS
	8. REFERENCES

